

DIGITAL INNOVATION CHALLENGE LOS RETOS DE LA INNOVACIÓN DIGITAL

Horizon 202 European Union Fundi Research & Innova

SMILE **Smart Island Energy Systems** WP4 - Madeira Island Pilot **Data Transformation**

David Aveiro

In Madeira the SMILE project is focused in developing technologies to make the electrical grid smarter, especially

- Increasing the amount of self-consumption in photo voltaic (PV) owners
- Stabilizing the grid in areas with a high amount of PV injection into the grid

Implementing smart charging techniques for electric vehicles.

Research & Innova

These overalls goal led to the development and deployment of several hardware/software components:

- Energy monitors
- o PV systems

O

- o Smart chargers
- Battery Storage Systems

All the equipment communicates with a centralized entity known as the **Energy Management System (EMS)**.

Responsible for aggregating all the data and providing APIs for the basic CRUD operations
To be used by the project partners during the pilots operation

sm

The EMS is stores the data in a series of noSQL and SQL databases

In general all the data that reaches the EMS is formatted in the JSON format.

However the actual pilots equipment uses different protocols/data formats

- Modbus-RTU
- \circ JSON
- \circ uart
- o HTTP

...

Ο

- o IEC61851
- Serial/Rfid

Research & Innovat

The data transformation is accomplished by a piece of custom hardware installed sm;)e every pilot location

The gateway

Regarding the data pipeline in SMiLE the gateway is responsible for

- Reading data from the different equipment
- Formatting to the JSON format
- Pushing it to the EMS
- Storing local backups
- Pushing raw data for another persistent storage server
 - o Backup server

sm

The development of the gateway increased the overall cost of each installation

However it is a crucial component to assure the proper integration of all the equipment.

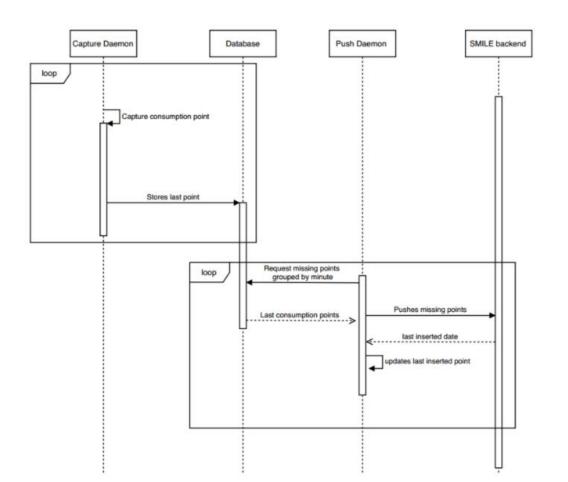
- Especially considering that the project attempts to evaluate in the real world how different smartgrid approaches can impact the grid quality, as well as its consumers
- With this approach we guaranteed that all the hardware/software upstream of the actual smartgrid hardware *"talks the same language"* which is important when there is the need to test new equipment.
- Or to interface equipment that which were not supposed to (e.g. equipment from different manufacturers)

 \bigcirc

Madeira Pilot – data transformation

In detail – Integration with of consumption from an energy meter

The gateway communicates with an Carlo Gavazzi Energy Meter, using the ModBus-RTU protocol.


A series of python scripts are responsible for:

- o acquiring the data from the energy monitor
- \circ ~ averaging for the required frequency
- pushing data for the backend
- verifying the data was sent correctly
- averaging the data for a csv file
 - uploading for a google drive backup account

sm

In detail – Integration with of consumption from an energy meter

sm

In detail – Integration with of consumption from an energy meter

The EMS aggregates the consumption data together with data from other pilot sites.

- It used a document based database
 - \circ The sources of the data can be customized per pilot
 - \circ The schemas used to define the data format can be customized
 - For the gateway->energy meter case-study the schema is

DIGITAL INNOVATION CHALLENGE

Madeira Pilot – data transformation

id" : ObjectId("5a69c4f39e0312c306bc423c"), "type" : "jsonListener", "config" : { "slug": "carlo-usage", "producerRequired" : true, "converter" : { "L3" : { "PF":{ "type" : "identity" }, "I":{ "type" : "identity" }, "V" : { "type" : "identity" }, "S" : { "type" : "identity" }, "Q" : { "type" : "identity" }, "P" : { "type" : "identity"

"L2" : { "PF":{ "type" : "identity" }, "I" : { "type" : "identity" }, "V":{ "type" : "identity" }, "S" : { "type" : "identity" }, "Q" : { "type" : "identity" }, "P":{ "type" : "identity" "L1":{ "PF":{ "type" : "identity" }, "I":{ "type" : "identity" }, "V" : { "type" : "identity" },

"S" : { "type" : "identity" "Q" : { "type" : "identity" }, "P":{ "type" : "identity" "F":{ "type" : "identity" "timestamp" : { "type" : "datetime", "typeParams" : { "format" : "YYYY-MM-DDTHH:mm:ssZ" "measure cons": { "type" : "identity" "measure prod":{ "type" : "identity" "measure_grid" : { "type" : "identity" "name" : "carlo-usage" ζ,

v" : 0

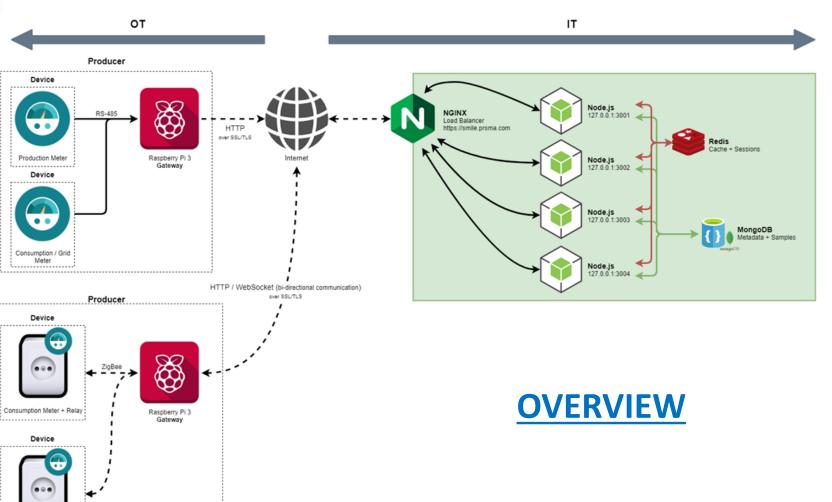
for Research & Innovation

sm;)e

for Research & Innovation

In detail – Integration with of consumption from an energy meter

Once in the EMS the data is available in an admin and visualization tool


SMILE	03 April 2019 - Wednesday	FUNCHAL MADERA	18°C ⊫	Hello, family admin 1 + tansard 1 kpl (met
 A recent ■ Natorical 	Actual usage 110 w	Û	106w	• • 5 w
di comparison di samples	production	L	consumption	unused production
	Producer: Dev Ufricit (psecentias)graat cent) 1 19 View your data from: Last hour Last 24 hours Last 7 c		- INGU	•
	▲ Recent energy usage 155			0
	115		~/	$\Delta \sim$
	50			
	1640 1645 1630 ▲ Savings	14:55 15:00 Consumption	25:05 25:00 25:15 Predection Unseed predection Consumption details	15/20 25/25 25/30 25/35 m
		39,07 gCO2		94%
	Unused production Production Total energy produced in the last	•	U	of the energy consumed in the last hour was produced by your system!
	hour. Used production Energy consumed from production is the last hour.	kmb 0,09 kmb		n the grid in the last hour.
	個。 Wasted production Wasted energy in the last hour.	0,01 kans	Production Energy consumed from Total Comments	n production in the last hour. kinh
	H2222 G.A. No 731249			KAN Copyright © 2018

Home					
	ð 8%		31		10
	ra Production		Producers		Source
Ver	٥	Ver	٥	Ver	C
Madeira Production (% relativa)		Top Producers (n° Devices	5)	Top Sources (n° Devices)	
		# FIK_CasaBranca	24 devices	Scarlo-usage	50 device
		∦ FIK_UVA	23 devices	€ eGauge	36 device
		# Tukxi	7 devices	plugwise-usage	14 devices
		∦ EV	6 devices	SUltraSonicWaste	7 devices
Térmica 🔜 Hídrica 🔜 Eólica 📗	Biomassa	A Plugwise_Office	5 devices	ev_usage	6 devices

sm;

Madeira Pilot – data transformation

Consumption Meter + Relay

DIGITAL

LOS RETOS DE LA INNOVACIÓN DIGITAL

INNOVATION

IGE

...

for Research & Innovation

Sm

Questions?

info@prsma.com